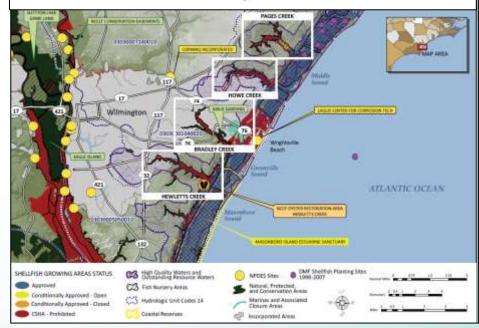
North Carolina Coastal Federation Oyster Habitat Restoration Efforts

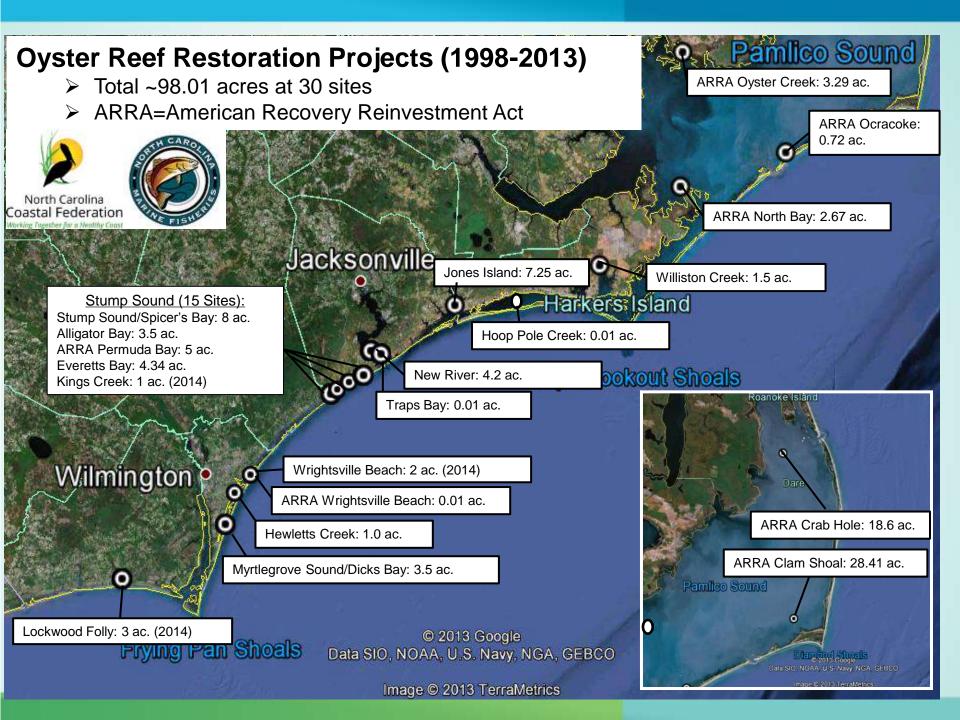
North Carolina Coastal Federation NORTH RIVER FARMS RESTORATION SITE

Alligator River Interconstal Wolers by Swan Lake Long Shoal River Mattamaskeet Ventures, LLC Alligator River Growers/ Lux Farm Otter Creek

Mattamuskeet Ventures, Alligator River Growers, Lux Farms Hyrdological/Wetland Restoration Plan

Watershed Restoration to Oyster Reefs





Bradley & Hewletts Creek Watershed Restoration Plan

Oyster Habitat Creation Methodology

Reef Construction

Remote Setting & Reef Seeding

Shellbag Reefs – Living Shorelines

Post Project Monitoring

Туре	Parameter	Structural	Method	Goal
i ype	i arameter	or	WELLIOU	Goal
		<u> </u>		
		Functional		
reef success	% living	Funct.	quadrats	Hab. restoration
	Size of oysters	Funct.	quadrats	Hab. restoration
	density	Funct.	quadrats	Hab. restoration
	Recruitment	Funct.	tiles	Hab. restoration
	assoc. fauna	Funct.*	quadrats	Hab. restoration
reef arch.	Rugosity	Struct.*	chain method	Hab. restoration
	Footprint	Struct.*	pole probe	Hab. restoration
water quality	Turbidity	Struct.*	secchi	water quality
	Temp.	Struct.	thermometer	water quality
	Salinity	Struct.	refractometer	water quality
	DO	Struct.*	test kit	water quality
	clearance	Funct.	Grizzle equation	water quality
other	Sediment'n	Struct.	tile	-
	Current velocity	Struct.	estimate	
	substrate	Struct.	observe	
	other	Struct.	site conditions	

Lessons Learned

- 1) Shallow subtidal areas low relief, patchy clumps of shell
- Intertidal matrix of patch reefs mirroring height and shell thickness of existing natural reefs
- 3) #4 marine limestone (marl) suitable reef substrate in a variety of conditions, and should be tested more
- 4) Low density reef seeding with spat on shell in southern region does not appear to enhance oyster densities/abundances
- 5) Conducting oyster restoration activities in closed/polluted areas avoids user conflicts; more potential for restoration; but some consider it "wasting" of cultch material
- 6) Shoreline oyster shell bags remained in a variety of conditions
- 7) Pyramid-shaped oyster shell bag sills recruited more oysters than cubed sills. More recruitment observed on waterward sides
- 8) Need to consider settling of oyster shell bags when determining the number of layers needed to achieve the desirable height of oyster shell bag sills. Use marl bags for bottom layers.